

DPP-4 (Thermodynamics)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/60

Video Solution on YouTube:-

https://youtu.be/zghuOgPWEPU

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/78

Q 1. 1/R (R is universal gas constant) moles of an ideal gas (γ =1.5) undergoes a cyclic process (ABCDA) as shown in fig. Assuming the gas to be ideal. If the net heat exchanger is 10x Joules, find the value of x ? [In 2 = 0.7].

- Q 2. One mole of an ideal gas (mono-atomic) at temperature T₀ expands slowly according to law P = cV (c is constant). If final temperature is 2T₀, heat supplied to gas is (a) $2RT_0$ (b) (3/2) RT_0 (c) PT
 - (c) RT_0 (d) (1/2) RT_0
- Q 3. A gas is taken through cyclic process ABCA is shown in figure. If 2.4 cal. of heat is given in the process, what is value of J?

- (c) 4.1 J/cal (d) None of these
- Q 4. Heat is supplied to a diatomic gas at constant pressure. The ratio of $\Delta Q : \Delta U : W$ is: (a) 5:3:2
 (b) 5:2:3
 (c) 7:5:2
 (d) 7:2:5
- Q 5. An ideal monoatomic gas undergoes a cyclic process ABCA as shown in the figure. The ratio of heat absorbed during AB to the work done on the gas during BC is:\

2

Q 6. A gas is expanded from volume V_0 to $2V_0$ under three different processes. Process 1 is isobaric, process 2 is isothermal and process 3 is adiabatic. Let ΔQ_1 , ΔQ_2 and ΔQ_3 be the heat absorbed by gas in these three processes. Then:

 $2V_0$ V_0 (a) $\Delta Q_1 > \Delta Q_2 > \Delta Q_3$ (b) $\Delta Q_1 < \Delta Q_2 < \Delta Q_3$ (c) $\Delta Q_2 < \Delta Q_1 < \Delta Q_3$ (d) $\Delta Q_2 > \Delta Q_3 > \Delta Q_1$

Q 7. Certain amount of an ideal gas are contained in a closed vessel. The vessel is moving with a constant velocity v. The molar mass of gas is M. The rise in temperature of the gas when the vessel is suddenly stopped is : (γ = adiabatic

- Q 8. A monoatomic gas undergoes a process given by 2dU + 3dW = 0, then the process is: (a) isobaric (b) adiabatic (c) isothermal (d) none
- Q 9. STATEMENT - 1 Adiabatic expansion is always accompanied by fall in temperature. because STATEMENT - 2In adiabatic process, volume is inversely proportional to temperature.
- Q 10. *n* moles of an ideal monatomic gas undergoes a process in which the temperature changes with volume as $T = KV^2$. If the temperature of the gas changes from T_0 to $4T_0$ then

(a) work done by the gas is $3nRT_0$

3

- (b) heat supplied to the gas is $4 nRT_0$
- (c) work done by the gas is $(3/2)nRT_0$
- (d) heat supplied to the gas is $\frac{3}{2}nRT_0$
- Q 11. A block of ice mass 10 gm is in thermal equilibrium with a water bath containing 10 gm of water which is kept on a conducting movable massless piston on a cylinder containing 3 moles of an ideal diatomic gas in thermal equilibrium with water. The walls of cylinder are adiabatic and heat lost to surroundings is negligible. The gas is heated slowly by a heater. (Latent heat = 80 cal/gm, specific heat of water = 1 cal/gm, R = 25/3 J/mol *K*, mechanical equivalent of heat = 4.2 J/cal)

Answer Key

Q.1 7	Q.2 a	Q.3	a	Q.4	C	Q.5 c
Q.6 a	Q.7 b	Q.8	d	Q.9	C	Q.10 c
Q.11 I – C, II – A, III – B, IV – D		L		1		1

× × ×	PLUS India's Be Interaction Structure Live Test Personal Study Pla	ICONIC est Educat ve Live Cla ed Courses s & Quizze Coach	*i ors sses & PDFs s			
24 months No cost EMI		₹:	2,333/n ₹56,0	no 00	>	
18 months No cost EMI		₹	2,625/n ₹47,2	no 50	>	
12 months No cost EMI		₹	3,208/n ₹38,5	no 00	>	
6 months No cost EMI		₹	4,667/n ₹28,0	no 00	>	
To be paid as a one-time payment View all plans						
Add a re	eferral cod	e		A	PPLY	

PHYSICSLVE

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.

	PLUS					
S	India's Best Educators					
S	Interactive Live Classes					
8	Structured Courses & PDFs					
\otimes	Live Tests & Quizzes					
	Personal					
	Study Plo	inner				
24 months		₹2.100/mo				
No cost EMI		+10% OFF ₹50,400	>			
18 months		₹2.363/mo				
No cost EMI		+10% OFF ₹42,525	>			
12 months		₹2 888/mo				
No cost EMI		+10% OFF ₹34,650	>			
(markle		F4 200 /				
6 months		₹4,200/mo	>			
NO COST EMI		+10% OFF \$25,200				
To be paid as a one-time payment						
	Viev	v all plans				
Awesome! PHYSICSLIVE code applied X						

Written Solution

DPP- 4 Thermodynamics- Applying FLOT in different processes By Physicsaholics Team

2)
$$\Delta U = \frac{1}{2} \ln R \, dT = \frac{3}{2} \times 1 R \times (2T_0 - T_0) = \frac{3}{2} R T_0$$

Equation of process 18 $P = C \vee \Rightarrow P \vee 1 = C \Rightarrow Polytopic process$

$$\int \sqrt{3} x = \frac{-\ln R \, dT}{5 - 1} = \frac{1 \times R \times T_0}{-1 + 1} = \frac{R T_0}{2}$$

$$C = \frac{1}{2} R T_0 + \frac{R T_0}{2}$$

$$= 2R T_0$$
Ans. a

4) for diatomic
$$(f=5)$$
 gas at Constant pressure
 $W = nR dT$
 $dU = \frac{f}{2}nR dT = \frac{5}{2}NR dT$
 $dR = dU + W = \frac{7}{2}NR dT$
 $\Rightarrow AR dU W = \frac{7}{2} \frac{5}{2} \cdot \frac{1}{2}$

8) 2 dU + 3 dW = 0 $\Rightarrow \mathcal{I} \times \frac{3}{2} n R dT + 3 P dv = 0$ $\Rightarrow 3 \left[P dv + V dP + P dv \right] = 0$ VdP 2PdV = シ dr シ ZlnV U Jh ! 7

Ans. d

9)
In a diabatic Expansion

$$da = 0 \Rightarrow dU + W_{gab} = 0$$

 $\Rightarrow dU = -Va \Rightarrow T discreases$
In adrabatic brocess
 $g_V = c$
 $\Rightarrow T_V = c$

Ans. c

$$10) \quad T = KV^{2} \Rightarrow \frac{PV}{nR} = KV^{2} \Rightarrow PV^{-1} = C \Rightarrow Polytropic processes$$

$$W_{gass} = -\frac{nR0T}{s-1} = -\frac{nR(4T_{0}-T_{0})}{-1+1} = \frac{3 nRT_{0}}{2}$$

$$\Delta V = \frac{1}{2} nR0T = \frac{3}{2} nR(4T_{0}-T_{0}) = \frac{3}{2} nRT_{0}$$

$$A = \frac{400}{2} + W_{gas}$$

$$A = \frac{12nRT_{0}}{2} = 6nRT_{0}$$

$$A = \frac{12nRT_{0}}{2} = 6nRT_{0}$$

$$A = \frac{1}{2} - \frac{12nRT_{0}}{2} = 6nRT_{0}$$

(1)
1)
$$P_{gas} = P_{o} + \frac{m_{g}}{A} = Constant$$

Since gas is in equilibrium with (ice+water)
 $T = Constant$
 $\Rightarrow V = Constant$
 $\Rightarrow V = Constant$
 $\Rightarrow Constant$
 $\Rightarrow V = Constant$
 $\Rightarrow V = Constant$
 $\Rightarrow Uork done by $0^{43} = 0$
 $AU = \frac{f}{2} nRoT = \frac{5}{2} \times 3 \times 8 314 \times 100 = 62563$$

(III)
$$(300 \times K \text{ dow by } 3^{4} \times 3$$

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/60

Video Solution on YouTube:-

https://youtu.be/zghuOgPWEPU

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/78

