

DPP - 4 (Thermodynamics)

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-

https://physicsaholics.com/home/courseDetails/60
https://youtu.be/zghuOgPWEPU
https://physicsaholics.com/note/notesDetalis/78

Q 1. $\quad 1 / \mathrm{R}$ (R is universal gas constant) moles of an ideal gas $(\gamma=1.5$) undergoes a cyclic process (ABCDA) as shown in fig. Assuming the gas to be ideal. If the net heat exchanger is 10x Joules, find the value of x ? [In $2=0.7]$.

Q 2. One mole of an ideal gas (mono-atomic) at temperature T_{0} expands slowly according to law $\mathrm{P}=\mathrm{cV}$ (c is constant). If final temperature is $2 \mathrm{~T}_{0}$. heat supplied to gas is
(a) $2 R T_{0}$
(b) $(3 / 2) R T_{0}$
(c) $R T_{0}$
(d) (1/2) $R T_{0}$

Q 3. A gas is taken through cyclic process ABCA is shown in figure. If 2.4 cal. of heat is given in the process, what is value of J ?

(a) $4.17 \mathrm{~J} / \mathrm{cal}$
(b) $4.4 \mathrm{~J} / \mathrm{cal}$
(c) $4.1 \mathrm{~J} / \mathrm{cal}$
(d) None of these

Q 4. Heat is supplied to a diatomic gas at constant pressure. The ratio of $\Delta \mathrm{Q}: \Delta \mathrm{U}: \mathrm{W}$ is:
(a) $5: 3: 2$
(b) $5: 2: 3$
(c) $7: 5: 2$
(d) $7: 2: 5$

Q 5. An ideal monoatomic gas undergoes a cyclic process ABCA as shown in the figure. The ratio of heat absorbed during AB to the work done on the gas during BC is: \backslash

(a) $\frac{5}{2 \operatorname{In} 2}$
(b) $\frac{5}{3}$
(c) $\frac{5}{4 \operatorname{In} 2}$
(d) $\frac{5}{6}$

Q 6. A gas is expanded from volume V_{0} to $2 \mathrm{~V}_{0}$ under three different processes. Process 1 is isobaric, process 2 is isothermal and process 3 is adiabatic. Let $\Delta \mathrm{Q}_{1}, \Delta \mathrm{Q}_{2}$ and $\Delta \mathrm{Q}_{3}$ be the heat absorbed by gas in these three processes. Then:

(a) $\Delta \mathrm{Q}_{1}>\Delta \mathrm{Q}_{2}>\Delta \mathrm{Q}_{3}$
(b) $\Delta \mathrm{Q}_{1}<\Delta \mathrm{Q}_{2}<\Delta \mathrm{Q}_{3}$
(c) $\Delta \mathrm{Q}_{2}<\Delta \mathrm{Q}_{1}<\Delta \mathrm{Q}_{3}$
(d) $\Delta \mathrm{Q}_{2}>\Delta \mathrm{Q}_{3}>\Delta \mathrm{Q}_{1}$

Q 7. Certain amount of an ideal gas are contained in a closed vessel. The vessel is moving with a constant velocity v. The molar mass of gas is M. The rise in temperature of the gas when the vessel is suddenly stopped is: $(\gamma=$ adiabatic constant)
(a) $\frac{M v^{2}}{2 R(\gamma+1)}$
(b) $\frac{M v^{2}(r-1)}{2 R}$
(c) $\frac{M v^{2}}{2 R \gamma}$
(d) $\frac{M v^{2} \gamma}{2 R(\gamma-1)}$

Q 8. A monoatomic gas undergoes a process given by $2 \mathrm{dU}+3 \mathrm{dW}=0$, then the process is:
(a) isobaric
(b) adiabatic
(c) isothermal
(d) none

Q 9. STATEMENT - 1

Adiabatic expansion is always accompanied by fall in temperature.

because

STATEMENT - 2
In adiabatic process, volume is inversely proportional to temperature.

Q 10. n moles of an ideal monatomic gas undergoes a process in which the temperature changes with volume as $T=K V^{2}$. If the temperature of the gas changes from T_{0} to $4 T_{0}$ then
(a) work done by the gas is $3 n R T_{0}$
(b) heat supplied to the gas is $4 n R T_{0}$
(c) work done by the gas is $(3 / 2) n R T_{0}$
(d) heat supplied to the gas is $\frac{3}{2} n R T_{0}$

Q 11. A block of ice mass 10 gm is in thermal equilibrium with a water bath containing 10 gm of water which is kept on a conducting movable massless piston on a cylinder containing 3 moles of an ideal diatomic gas in thermal equilibrium with water. The walls of cylinder are adiabatic and heat lost to surroundings is negligible. The gas is heated slowly by a heater. (Latent heat $=80 \mathrm{cal} / \mathrm{gm}$, specific heat of water $=1 \mathrm{cal} / \mathrm{gm}$, $R=25 / 3 \mathrm{~J} / \mathrm{mol} K$, mechanical equivalent of heat $=4.2 \mathrm{~J} / \mathrm{cal}$)

Column I

I. Work done by the gas till ice melts
II. Change in internal energy of the e D. 20510 J

Column II
A. $\quad 6250 \mathrm{~J}$
B. 2500 J

C. zero
IV. Net heat supplied by heater till the water starts boiling

Answer Key

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach \times Study Planner

No cost EMI

18 months
No cost EMI

12 months
12 months
No cost EMI
₹3,208/mo
₹ 38,500
₹ $4,667 / \mathrm{mo}$
₹ 28,000
6 months
No cost EMI

To be paid as a one-time payment
View all plans
9
Add a referral code

PHYSICSLIVE

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach
\times Study Planner
₹ $2,100 / \mathrm{mo}$ +10\% OFF ₹50,400

$$
+10 \% \text { OFF ₹ } 42,525
$$

12 months	₹ $2,888 / \mathrm{mo}$
No cost EMI	$+10 \%$ OFF ₹ 34,650

6 months
No cost EMI
₹ $4,200 / \mathrm{mo}$

$$
+10 \% \text { OFF ₹ } 25,200
$$

To be paid as a one-time payment
Use code PHYSICSLIVE to get 10\% OFF on Unacademy PLUS.

Written Solution

DPP- 4 Thermodynamics- Applying FLOT in different processes
By Physicsaholics Team
1)

2) $\Delta U=\frac{f}{2} n R \Delta T=\frac{3}{2} \times 1 R \times\left(2 T_{0}-T_{0}\right)=\frac{3}{2} R T_{0}$

Equation of process is $P=C V \Rightarrow P V^{-1}=C \rightarrow$ Polytropic process

$$
W_{\text {gas }}=\frac{-n R \Delta T}{\lambda-1}=\frac{-1 \times R \times T_{0}}{-1-1}=\frac{R T_{0}}{2}
$$

$$
\Delta Q=\Delta v+W_{g e s}
$$

$$
\frac{V_{3}}{2} R T_{0}+\frac{R T_{0}}{2}
$$

$$
=2 R 6
$$

Ans. a
3)

$W_{\text {gus }}=$ Area of loop

$$
=\frac{1}{2} \times 20 \phi \times 15 \times 10,6 \times 10^{26}
$$

$$
\begin{aligned}
& =10 J \\
& 40=2.4 \text { cal. } \\
& \text { in cyclisprocess }
\end{aligned}
$$

$$
s a d=h_{\text {gas }}
$$

0

$$
\begin{aligned}
& \Rightarrow \quad 2.4 \mathrm{Cal}=10 \mathrm{~J} \\
& \Rightarrow \quad 1 \mathrm{Cal}=\frac{10}{2.4} \mathrm{~J}=4.17 \mathrm{~J} \\
& \Rightarrow \quad J=4.17 \mathrm{~J} / \mathrm{cal}
\end{aligned}
$$

Ans. a
$4)$
for diatomic $(f=5)$ gas at Constant pressures

$$
\begin{aligned}
W & =n R \Delta T \\
\Delta U & =\frac{f}{2} n R \Delta T=\frac{5}{2} n R \Delta T \\
\Delta Q & =\Delta U+W P=\frac{7}{2} n R \Delta T \\
\Rightarrow \Delta Q U Q & =\frac{7}{2}: \frac{5}{2}: 3
\end{aligned}
$$

Ans. C
5)

Ans. C
in Process $3 \rightarrow \Delta Q_{3}=0$
6)
in Process $2 \Rightarrow M Q_{2}=0+W_{2}$

Ans. a
7) When vessel will stop, all Kinetic energy will convert into internal energy.

Ans. b
8)

$$
\begin{aligned}
& 2 d U+3 d W=0 \\
& \Rightarrow \quad 2 \times \frac{3}{2} n R d T+3 P d v=0 \\
& \Rightarrow 3[P d V+V d P+P d V]=0 \\
& \Rightarrow \quad 2 P d V=V d P \\
& \Rightarrow \quad 2 \int \frac{d v}{v}=-\int \frac{d p}{p} \\
& \begin{array}{l}
\Rightarrow \quad 2 \ln V=-\ln p+c \\
\Rightarrow \ln V^{2}+\ln p z c
\end{array} \\
& \begin{array}{l}
\Rightarrow \quad D \quad H_{2}^{2}=c \\
\Rightarrow \quad P V^{2}=c
\end{array} \\
& \Rightarrow \quad P \quad P V^{2}=C
\end{aligned}
$$

Ans. d
g)

In adiabatic expansion.

$$
\begin{aligned}
\Delta Q & =0 \Rightarrow \Delta U+w_{\text {gas }}=0 \\
\Rightarrow \quad \Delta U & =-v_{2} \Rightarrow \vec{y} \text { dxcrossess }
\end{aligned}
$$

In adiabatic process s
0 $P V^{2}=c$
$\Rightarrow \frac{T}{V} V^{y}=s$
\Rightarrow statement 1 is correct
\& wrong.

$$
\Rightarrow 7 v^{y}-2
$$

Ans. c
10)

$$
\begin{aligned}
& T=K V^{2} \Rightarrow \frac{P V}{n R}=K V^{2} \Rightarrow P V^{-1}=8 \rightarrow \text { Polytropic process } \\
& W_{\text {gas }}=\frac{-n R \Delta T}{\delta-1}=\frac{-n R\left(4 T_{0}-T_{0}\right)}{-1-1}=\frac{3 R R T_{0}}{2} \\
& \Delta V=\frac{f}{2} n R \Delta T=\frac{3}{2} h R\left(4 T_{0}-T_{0}\right)=\frac{9}{2} n R T_{0} \\
& \Delta Q=ष 0+W_{\text {gas }}
\end{aligned}
$$

11)
12) $P_{\text {gas }}=P_{0}+\frac{m g}{A}=$ Constant

Since gas is in equilibrium with (ice+ boaters)

$$
\begin{aligned}
& T=\text { Constant } \\
& \Rightarrow V=\text { Constant } \\
& \Rightarrow \text { cork don by gas }=0
\end{aligned}
$$

iii) increment in temperature $=100^{\circ} \mathrm{C}$.

$$
\Delta V=\frac{f}{2} \cap R \Delta T=\frac{5}{2} \times 3 \times 8.314 \times 100 \simeq 6250 \mathrm{~J}
$$

III) work done by gas

$$
=n R \Delta T=3 \times 8.314 \times 100=2500 \mathrm{~J}
$$

IV) Heat supplied up to boiling of crater

$$
\Delta Q=\Delta U+W_{\operatorname{gan}} \operatorname{m}^{2}+m+\Delta T
$$

$=5250+2500+(10 \times 80 \times 4.2+(20 \times 4.2 \times 100)$

Ans. $\quad I-C, I I-A, I I I-B, I V-D$

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/60

Video Solution on YouTube:-
https://youtu.be/zghuOgPWEPU

Written Solution on Website:-

Chalo Nikis

